
International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 814
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Empirical Evaluation of Software Component
Metrics

1AMIT KUMAR, 2DEEPAK CHAUDHARY, 3AVADHESH KUMAR
1IET, Alwar, Rajasthan, INDIA, 2IET, Alwar, Rajasthan, INDIA, 3Galgotias University, Greater Noida, U.P., INDIA

1amitk72@gmail.com, 2deepak.se17@gmail.com, 3kumar.avadh@gmail.com

Abstract— Many information-based legacy systems contain similar or even identical things, which are developed from scratch again and
again. From the scratch, development is more expensive and can take a long time to complete. Critical applications with strict time limits
may loose the market due to the delay in the development process. This has led to the evolution of a new approach, called component-
based development (CBD), which uses the concept of reusability in the application development. Component-based development is the
process of assembling existing software components in an application such that they satisfy a predefined functionality. Reduced
development time, effort and cost are few merits of CBD.

Component based development mainly involves the reuse of already developed components. The selection of best quality component is of
prime concern for developing an overall quality product. The present paper presents an empirical evaluation of some software component
metrics used for reusability.

Index Terms— Component, Component Based Software Engineering, Metric, Reusability, Customizability, Portability, Interface
Complexity, Understandability, Integrity, CBSD Reusability Tool.

—————————— ——————————

1 INTRODUCTION

eusability is becoming most important criteria for select-
ing a component for component-based systems. A highly

reusable component will help in better understanding and low
maintenance efforts for the application. Therefore, it is neces-
sary to estimate the reusability of the component before inte-
grating it into the system.

This paper aims to estimate quality characteristics of black-box
components and component-based systems. The work pro-
poses and validates metrics for reusability of the system. These
estimates will help application developers to select the best
quality component among others, which will eventually lead
to the development of good quality product.

2 COMPONENT BASED SOFTWARE ENGINEERING
CBSE embodies an element of “the buy, don’t build philoso-
phy” that shifts the emphasis from programming software to
composing software system [10]. It is also an approach for de-
veloping software that relies on software reuse and it emerged
from the failure of object-oriented development to support
effective reuse. Developing of software systems from the exist-
ing components have many advantages which are as follows:

1. Reliability is increased.
2. Low maintenance costs.
3. Development cost is reduced.
4. Less time to market.

A component is a language neutral, independently imple-
mented package of software services, delivered in an encapsu-
lated and replaceable container, accessed via one or more pub-
lished interface. While a component may have the ability to

modify a database, it should not be expected to maintain state
information. A component is not platform-constrained nor is it
application-bound [21]. A software component is a unit of
packaging, distribution or delivery that provides services
within a data integrity or encapsulation boundary. [3] A soft-
ware component is a coherent package of software implemen-
tation that can be independently developed and delivered. It
has explicit and well-specified interfaces for the services it
provides and for the services it expects from the others. Also,
it can be composed with other components, customizing some
of their properties, without modifying the components them-
selves [25]. An extra effort must be paid for additional func-
tionality of component beyond the current application’s need,
to make the component more useful [16].

3 SOFTWARE COMPONENT METRIC
As the number of components available on the market in-
creases, it is becoming more important to devise software met-
rics to quantify the various characteristics of components and
their usage. Software metrics are intended to measure the
software quality and performance characteristics quantitative-
ly, encountered during the planning and execution of software
development. These can serve as measures of software prod-
ucts for the purpose of comparison, cost estimation, fault pre-
diction and forecasting. Metrics can also be used in guiding
decisions throughout the life cycle, determining whether soft-
ware quality improvement initiatives are financially worth-
while. A lot of research has been conducted on software met-
rics and their applications. Most of the metrics proposed in
literature are based on the source code of the application.
However, these metrics cannot be applied on components and

R IJSER

http://www.ijser.org/
mailto:amitk72@gmail.com
mailto:deepak.se17@gmail.com
mailto:kumar.avadh@gmail.com

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 815
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

component-based systems as the source code of the compo-
nents is not available to application developers. Therefore, a
different set of metrics is required to measure various aspects
for component-based systems and their quality issues.

The authors [20] propose a set of metrics for measuring vari-
ous aspects of software components like complexity, customi-
zability and reusability. Boxall and Araban [11], considered
that understandability of the component affects the level of
reuse. Washizaki et al. [15], discussed the importance of reus-
ability of components in order to realize the reuse of compo-
nents effectively and proposed a Component Reusability
Model for black-box components from the viewpoint of com-
ponent users or application developers. Authors [15] also pro-
posed several metrics related to these factors, namely Exist-
ence of Meta-Information (EMI), Rate of Component’s Observ-
ability (RCO), Rate of Component’s Customizability (RCC),
Self-completeness of Component’s Return Value (SCCr) and
Self-completeness of Component’s Parameter (SCCp).

Gill and Grover [12] has proposed interface complexity metric,
based on interface signatures, constraints on the interfaces and
the packaging for different context of use. For each of these
aspects, a definition is given. The main drawback, it lacks an
empirical evaluation and validation of the proposed metric.
Sharma et al. [6] proposed interface complexity metric for
software components. Author has taken into consideration
interface methods and their associated properties, argument
types and return types. Gill [13], has given some guidelines for
high reusability for software components. These guidelines
include conducting reuse assessment, performing cost-benefit
analysis for reuse, adoption of standards for software compo-
nents, selecting pilot projects for deployment of reuse and fi-
nally identifying the reuse metrics.

Dumke and Schmietendorf [22], have proposed a set of reusa-
bility metrics for JavaBeans components. The metrics are taken
from structured and object-oriented design point of view. The
authors have considered the source code to measure the met-
rics; henceforth it is not applicable for black-box components.
Sharma et al. [2], proposed a neural network based approach
to measure the reusability of a software component. Tullio
Vernazza et al. [23], extended the CK metrics [24] by propos-
ing new metrics corresponding to each CK metric. Lisa and
Delugach [19], proposed the dependency representation in
forms of conceptual graphs where conceptual graphs are for-
mal, logic based, and semantic network language that are used
in domain modeling and requirement modeling. Pernilla [17],
has considered several factors that contribute to the complexi-
ty of large component-based software projects.

Guo [18], has proposed theory based framework for modeling
component dependencies. Stafford et al. [14], has practically

demonstrated a graph based representation for the dependen-
cy relationship between two or more components. Balkishan et
al. [4], has introduced a set of component-based metrics,
namely, Component Dependency Metric (CDM) and Compo-
nent Interaction Density Metric (CIDM), which measure the
dependency and coupling aspects of the software components
respectively. Sharma et al. [5], has given link-list based ap-
proach to represent the dependency relationship in Compo-
nent-Based System (CBS). V. Lakshmi Narasimhan et al [1]
have studied series of metrics proposed by various researchers
and has thoroughly analyzed, evaluated and benchmarked
using several large-scale publicly available software systems.

As the diversity of the components in the market is increasing
day by day, it is becoming mandatory to devise software met-
rics to quantify the various quality characteristics of compo-
nents. Between several quality characteristics, the reusability is
one of the important quality characteristics of the components.
Reusability is one of the characteristics which can measure the
degree of features that are reused while developing an appli-
cation. There are a number of existing metrics [24, 9] available
for measuring the reusability for object-oriented systems.
These metrics focus on the object structure, which reflects on
each individual entity such as methods and classes, and on the
external attributes that measure the interaction among entities
such as coupling and inheritance. The author [12], discusses
the various issues concerning component reusability and its
benefits in terms of cost and time-savings.

EMI and RCO metrics indicates that high value of readability
will help user to understand the behavior of a component
from outside the component. Many researchers had also con-
sidered similar factors for estimating reusability. Like, author
[8] considered adaptability, compose-ability and complexity of
a component to describe its reusability. The author [27], con-
sidered two aspects, usability and usefulness while REBOOT
(Reuse Based on Object-Oriented Techniques) proposed by
[28] has taken factors like portability, flexibility, understanda-
bility and confidence to assess the reusability.

Authors [6], proposed interface complexity metric for software
components. Authors [2], proposed a neural network based
approach to measure the reusability of a software component.
The authors have considered four factors, customizability,
portability, interface complexity and understandability, which
is used for estimation of reusability for components. These
four factors are considered as input parameters, while reusa-
bility is output parameter in order to train the network. Train-
ing and testing are performed by different number of hidden
layers and neurons to get the best results. They have conclud-
ed that the neural network is able to predict the reusability of
the components.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 816
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

We conclude that, complex components take much time to
execute and therefore they are difficult to maintain and we
have to take into account the understanding of the compo-
nents along with other important factors required for estimat-
ing the reusability of software components.

4 EMPIRICAL EVALUATION OF SOME SOFTWARE
COMPONENT METRICS

To obtain the values of the software component metric, an ex-
periment is conducted on various JavaBeans components
available at various websites. JavaBeans are reusable software
components for Java. They are classes that encapsulate
many objects into a single object (the bean). They
are serializable, have a 0-argument constructor, and allow ac-
cess to properties using getter and setter methods. These Ja-
vaBeans components vary from very simple and small to
complex and large. These have different number of attributes
and methods. We assign different weight values to these
methods based on the data type of arguments or return values,
used in the method. Arguments/Return types may be of primi-
tive data types like integer, structured data types like date,
string, array list, vector and complex data types like class type,
built -in and user-defined components, pointers/reference and
others. Therefore, based on the complexities involved in these
data types, different weight values are assigned to the meth-
ods. We classify these data types in five categories, namely,
very simple, simple, medium, complex and highly complex.
Similarly based on the data type, we can categories properties
into very simple, simple, medium, complex, and highly com-
plex and can assign the corresponding weight values to them.

Data types are categorized as:

1. Very simple include integer, double, Boolean, float
type.

2. Simple include structured data type.
3. Medium include Class type and Object type.
4. Complex includes pointers, built-in data type.
5. And highly complex includes User-defined data

types.

Method having no argument (e.g. constructor) may be consid-
ered as simplest method and we assign the weight value to
these methods 0.025. All other interface methods are assigned
weight values depending on the type and total number of ar-
guments and return types.

The following table shows these weight values:

TABLE 4.0: WEIGHT VALUES FOR INTERFACE METHODS
Data type
→
No. of
data types
↓

Very
Sim-
ple

Sim-
ple

Medi-
um

Com-
plex

Highly
Com-
plex

1-3 0.05

0.10

0.15

0.20

0.25

4-6

0.10

0.20

0.30

0.40

0.50

7-9

0.15

0.30

0.45

0.60

0.75

>=10

0.20

0.40

0.60

0.80

1.00

The same table can be used for getting the weight values for
properties used in the component. Now, by referring to these
tables, we can measure the complexity of each interface meth-
od and property, and finally by assigning ‘a’ and ‘b’ an appro-
priate value, the interface complexity of the component can be
calculated by using equation (4.3.1).

4.1 Customizability
Customizability is defined as the ability to modify a compo-
nent as per the application requirement. Better customizability
will lead to a component with better reusability. It will also
help in maintaining the system in the later phases. Therefore,
it can be used to measure the maintainability and reusability
for CBS. It may be measured on the basis of writable proper-
ties available in the component. Writable properties in Java
Bean components may be recognized by set methods (Washi-
zaki, 2003). The following formula is used to evaluate this
metric:
 No. of Set Methods
 Customizability =--
 Total number of Properties

The following table shows the number of set methods, number
of properties and Customizability of various JavaBeans com-
ponents:

TABLE 4.1: VALUES OF CUSTOMIZABILITY OF VARIOUS JAVABEANS
COMPONENTS

JavaBeans

Set
methods

Properties

Customiza-
bility

ExplicitButton-
BeanInfo

11 20 0.55

ExplicitButton-
Customizer

6 12 0.50

ExternalizableBut- 6 14 0.43

IJSER

http://www.ijser.org/
http://en.wikipedia.org/wiki/Code_reuse
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Component-based_software_engineering
http://en.wikipedia.org/wiki/Java_(programming_language)
http://en.wikipedia.org/wiki/Object_(computer_science)
http://en.wikipedia.org/wiki/Serialization
http://en.wikipedia.org/wiki/Nullary_constructor
http://en.wikipedia.org/wiki/Mutator_method

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 817
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

ton

OurButton

36 79 0.46

JellyBean

7 10 0.70

Juggler

9 30 0.30

JugglerBeanInfo 3 7 0.43

Atom

4 5 0.80

Molecule

8 30 0.27

MoleculeNameEd-
itor

2 6 0.33

4.2 Portability
It is the ability of a component to be transferred from one en-
vironment to another with little modification, if required. It is
typically concerned with reuse of component on new plat-
forms. The component should be easily and quickly portable
to specified new environments if and when necessary, with
minimized porting efforts and schedules. For better reusabil-
ity, component should be highly portable, means; it should be
supported by several platforms. Here, for the proposed work,
portability may be defined as [30]:

 No. of platforms the component can support
Portability = --
 Total no. of platforms that may be required by CBSS

By using this metric, we can measure that how many plat-
forms can be supported by the component.

The following table shows the number of platforms the com-
ponent can support, number of platform required and Porta-
bility of various JavaBeans components:

TABLE 4.2: VALUES OF PORTABILITY OF VARIOUS JAVABEANS
COMPONENTS

JavaBeans

Platform
Supported

Platform
Required

Portability

ExplicitButton-
BeanInfo

 2 6 0.33

ExplicitButton-
Customizer

 2 3 0.67

Externalizable-
Button

2 2 1.0

OurButton

4 6 0.67

JellyBean

 5 8 0.63

Juggler

3 4 0.75

JugglerBeanInfo 5 8 0.63

Atom

4 8 0.50

Molecule

2 5 0.40

MoleculeNa

meEditor

5 7 0.71

4.3 Interface Complexity
We extended the approaches described in (Rotaru et al., 2005;
Gill and Grover, 2004; Boxall and Araban, 2004) while propos-
ing a new interface complexity metric for components. Pro-
posed metric uses the signature or the behavior of the compo-
nent through its interface methods and properties, which are
available even without going into the internals details of the
component. For the proposed metric, we consider the events
and their listeners similar to the methods. We propose that the
interface complexity metrics for the component will be due to
the complexities involved in its interface methods and proper-
ties described above and define Interface Complexity Metric
(ICM) for Component, C as:
 ICM (C) = a ∑ CIMi+ b ∑ CPj
… (4.3.1)
Where CIMi is the complexity of ith interface method and CPj
is the complexity of jth property. ‘a’ and ‘b’ are weight values
for methods and properties respectively, as complexity of an
interface method may have different weight value than the
complexity of a property [29]. For simplicity we have taken a=
0.8 and b= 1.2.

The following table shows the number of methods, number of
properties and Interface Complexity of various JavaBeans
components using equation (4.3.1):

In MoleculeNameEditor component there are following find-
ings which are useful for calculation of interface complexity by
using above mentioned formula.
Total No. of Methods = 12
Total No. of Properties = 6
Out of total 12 methods 8 methods are very simple, 2 methods
are medium and 2 are simple.
IC of Total no. of methods = 0.8 * (1.6 + 1.2 + 0.8) = 2.88
Out of total 6 properties 4 are simple, one complex, and one
medium.
IC of Total no. of properties = 1.2 * (0.8 + 0.4 + 0.3) = 1.8
Total ICM = 2.88 + 1.8 = 4.68

TABLE 4.3.1: INTERFACE COMPLEXITY METRIC VALUES USING

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 818
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

EQUATION (4.3.1)
JavaBeans

Methods

Properties

Interface
Complexity

ExplicitButton-
BeanInfo

34 20 6.85

ExplicitButton-
Customizer

25 12 4.98

ExternalizableBut-
ton

20 14 9.84

OurButton

100 79 15.16

JellyBean

23 10 5.13

Juggler

50 30 10.4

JugglerBeanInfo 15 7 2.348

Atom

12 5 1.746

Molecule

45 30 9.68

MoleculeNameEd-
itor

12 6 4.68

Components are black box in nature. The source code of these
components is not available. Application may interact with
these components only through their well - defined interfaces.
Interface acts as a primary source for understanding, use and
implementation and finally maintenance for the component.
Therefore, the complexity of these interfaces plays a lead role
while measuring the overall complexity of the component.
Complex interfaces will lead to the high efforts for under-
standing and customizing the components. Therefore for bet-
ter reusability, interface complexity should be as low as possi-
ble. The following formula is used [30] to evaluate this criteri-
on:
Interface Complexity = 1 – (Number of interfaces not required/ Total
number of interfaces provided) …(4.3.2)
More the unrequired interfaces more will be complexity and
hence less will be reusability.
The following table shows the number of interfaces not re-
quired, total number of interfaces provided and Interface
Complexity of various JavaBeans components using equation
(4.3.2):

TABLE 4.3.2: INTERFACE COMPLEXITY METRIC VALUES USING
EQUATION (4.3.2)
JavaBeans

Interfaces
Unrequired

Interfaces
Provided

Interface
Complexity

ExplicitButton-
BeanInfo

5 29 0.83

ExplicitButton-
Customizer

6 16 0.63

Externalizable-
Button

5 28 0.82

OurButton

12 32 0.63

JellyBean

9 14 0.36

Juggler

10 30 0.67

JugglerBeanInfo

5 20 0.75

Atom

7 12 0.42

Molecule

8 30 0.73

Mole-
culeNameEditor

4 24 0.83

4.4 Understandability
Similarly, readability can be measured by getting the observa-
ble properties from the component. Readability will help an
application developer to understand the component. If a com-
ponent is understandable, it will be easier to use and maintain.
Therefore readability will improve the usability, reusability
and maintainability of the component. It may be measured on
the basis of readable properties available in the component.
Readable properties in Java Bean components may be recog-
nized by get methods. The following formula is used to evalu-
ate this metric:
 No. of Get Methods
 Readability = ---
 Total number of Properties

The following table shows the number of get methods, num-
ber of properties and Readability of various JavaBeans com-
ponents:

TABLE 4.4: VALUES OF READABILITY OF VARIOUS JAVABEANS
COMPONENTS
JavaBeans

Get meth-
ods

Proper-
ties

Readabil-
ity

ExplicitButtonBean-
Info

5 20 0.25

ExplicitButtonCus-
tomizer

9 12 0.75

ExternalizableBut-
ton

10 14 0.71

OurButton

52 79 0.66

JellyBean

4 10 0.40

Juggler

21 30 0.70

JugglerBeanInfo 3 7 0.43

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 819
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Atom

2 5 0.40

Molecule

23 30 0.77

MoleculeNameEdi-
tor

3 6 0.50

4.5 Integrity
Integrity is the measure of the ability of a program to perform
correctly on different sets of input (Kreitzberg 1982). In a sense
integrity is a measure of how well a program has been tested.
A program may lack integrity if it does not account for all data
options, as in the case where a program does not account for
possible division by zero.
A program with a high degree of integrity should check input
values to determine whether they are within practical bounds.
The same concepts may be applicable with components.

 Integrity = Σ [1 - threat * (1 - security)]

Where, threat = probability of attack (that causes failure) and
 security = probability attack is repelled

The following table shows the values of threat, values of secu-
rity and Integrity of various JavaBeans components:

TABLE 4.5: VALUES OF INTEGRITY OF VARIOUS JAVABEANS
COMPONENTS
JavaBeans Threat

Security

Integrity

ExplicitButton-
BeanInfo

0.4 0.6 0.84

ExplicitButton-
Customizer

0.3 0.5 0.85

ExternalizableBut-
ton

0.8 0.4 0.52

OurButton

0.6 0.4 0.64

JellyBean

0.2 0.4 0.88

Juggler

0.4 0.8 0.92

JugglerBeanInfo 0.3 0.4 0.82

Atom

0.2 0.3 0.86

Molecule

0.6 0.4 0.64

MoleculeNameEd-
itor

0.4 0.6 0.84

5 CONCLUSION AND FUTURE WORK
Component-based software development promises to reduce

development costs by enabling rapid development of highly
flexible and easily maintainable software systems. Higher
complexity leads to high cost of maintainability. It is difficult
to customize an application which is highly complex. The pa-
per conducts an empirical evaluation on various JavaBeans
components and ensures the same. From the literature review
we conclude that there is no criteria to compute various quali-
ty characteristics such as maintainability, complexity, reusabil-
ity, etc for component- based systems. Many researchers have
proposed theoretical metrics without evaluation and valida-
tion or consider the source code of components while propos-
ing the metrics for the above mentioned quality characteristics.
The relationship between these quality characteristics to attain
the overall quality as a single variable has not been explored.
The main aim of the study is to estimate the quality character-
istics for components and component-based systems. In this
paper we propose and validate metrics for reusability of the
component-based systems and components. The estimates will
help application developers to select the best quality compo-
nent from number of other components, which will lead to
development of good quality product.

A reusability tool for CBSD can be developed using Fuzzy
logic, Neuro Fuzzy logic, and Genetic Algorithm based ap-
proach.

REFERENCES
[1] V. Lakshmi Narasimhan, P. T. Parthasarathy, and M. Das, “Evalua-

tion of a Suite of Metrics for Component Based Software Engineer-
ing (CBSE)”, Issues in Informing Science and Information Tech-
nology, Volume 6, 2009.

[2] Sharma, A., Kumar, R., Grover, P. S., “Reusability Assessment for
Software Components – a Neural Network Based Approach”, Inter-
national IEEE Conference 26-28 March, 2009.

[3] Microsoft Corporation.(2009) Definition of the term component.
[Online]. Available:
http://www.msdn.microsoft.com/repository/OIM/resdkdefinitionoft
hetermcomponent.asp

[4] Gill, N. S., Balkishan, “Dependency and Interaction Oriented
Complexity Metrics of Component-Based Systems”, ACM SIG-
SOFT Software Engineering Notes Vol. 33 Issue 2, pp: 1-5, 2008.

[5] Sharma, A., Kumar, R., Grover, P. S., “Estimation of Quality for
Software Components - an Empirical Approach”, ACM SIGSOFT
Software Engineering Notes, Vol. 33, Issue 5, pp: 1-10, 2008.

[6] Sharma, A., Kumar, R., Grover, P. S., “Empirical Evaluation of
Complexity for Software Components”, International Journal of
Software Engineering and Knowledge Engineering (IJSEKE), Vol.
18, Issue 5, pp: 519-530, 2008.

[7] Gill, N. S., “Importance of Software Component Characterization
for Better Software Reusability”, ACM SIGSOFT Software Engi-
neering Notes, Vol. 31, Issue 1, pp: 1-3, 2006.

[8] Rotaru, O. P., Dobre, M., Petrescu, M., “Reusability Metrics for
Software Components”, Proceedings of the 3rd ACS / IEEE Inter-
national Conference on Computer Systems and Applications (AIC-
CSA-05), Cairo, Egypt, pp: 24-29, 2005.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 5, May-2014 820
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

[9] Aggarwal, K. K., Singh, Y., Kaur, A., Malhotra, R., “Software Re-
use Metrics for Object-Oriented Systems”, Proceedings of the Third
ACIS Int'l Conference on Software Engineering Research, Man-
agement and Applications, pp: 48–55, 2005.

[10] Pressman, R. S., Software Engineering: A Practitioner’s Approach,
6th Edition, McGraw Hill Book Co., 2005.

[11] Boxall, M. A. S., Araban, S., “Interface Metrics for Reusability
Analysis of Components”, Proceedings of. Australian Software En-
gineering Conference (ASWEC'2004), Melbourne, Australia, pp:
40-46, 2004.

[12] Gill, N. S., Grover, P. S., “Few Important Considerations for De-
riving Interface Complexity Metric for Component-Based Systems”,
ACM SIGSOFT Software Engineering Notes, Vol. 29 Issue 2, pp:
1-6, 2004.

[13] Gill, N. S., “Reusability Issues in Component-based Development”,
ACM SIGSOFT Software Engineering Notes, Vol. 28, Issue 4, pp:
1-5, 2003.

[14] Stafford, J. A., Alexandar, L. W., Caporuscio, M., The Application
of Dependence Analysis to Software Architecture Descriptions,
Lecture Notes in Computer Science, Vol. 2804, pp: 52-62, 2003.

[15] Washizaki, H., Hirokazu, Y., Yoshiaki, F., “A Metrics Suite for
Measuring Reusability of Software Components”, Proceedings of
the 9th International Symposium on Software Metric, pp: 211-223,
2003.

[16] Gill, N. S., Grover, P. S., “Component-Based Measurement: Few
Useful Guidelines”, ACM SIGSOFT Software Engineering Notes,
Vol. 28, Issue 6, pp: 1-4, 2003.

[17] Pernilla, E., “Dealing with the Complexity of CBSE – Fundamental
Environmental Needs”, Chapter 18: Industrial Experience with
Dassault System Component Model, J. Estublier, J. M. Favre, R.
Sanlavilla, pp: 86-92, 2002.

[18] Guo, J., “Using Category Theory to Model Software Component
Dependencies”, Proceedings of the 9th Annual IEEE International
Conference and Workshop on the Engineering of Computer-Based
Systems (ECBS, 02), pp: 185-192, 2002.

[19] Lisa, C., Delugach, H. S., “Dependency Analysis Using Conceptual
Graphs”, In Proceedings of the 9th International Conference on
Conceptual Structures, ICCS92001, pp: 117-130, 2001.

[20] Cho, E. S., Kim, M. S., Kim, S. D., “Component Metrics to Meas-
ure Component Quality”, Proceedings of 8th Asia-Pacific Software
Engineering Conference, Macau, pp: 419-426, 2001.

[21] Sparling, M., “Lessons Learned Through Six Years of Component-
Based Development”, Communications of the ACM Journal, Vol.
43, Issue 10, pp. 47-53, 2000.

[22] Dumke, R., Schmietendorf, A., “Possibilities of the Description
and Evaluation of Software Components”, Metrics News, Vol. 5,
Issue 1, pp: 13-26, 2000.

[23] Vernazza, T., Granatella, G., Succi, G., Benedicenti, L., Mintchev,
M., “Defining Metrics for Software Components”, Proceedings of.
World Multi-conference on Systematics, Cybernetics and Informat-
ics, Vol. 11, pp: 16-23, 2000.

[24] Chidamber, S. and Kemerer, C., “A Metrics Suite for Object -
oriented Design”, IEEE Transactions on Software Engineering,
Volume 20, pp: 476-493, 1994.

[25] D‟ Souza, D. F., Wills, A. C., “Objects, Components and Frame-
works with UML: The Catalysis Approach”. Addison Wesley,
Reading, MA, 1999.

[26] Judith, A. C., Audrey, E. T., “A Management Guide to Software
Maintenance in COTS-Based Systems”, a Technical Report of Mi-
tre, Center for Air Force C2 Systems: Bedford, MA, pp: 1-35, 1998.

[27] Mili, H., Mili, F., Mili, A., “Reusing Software: Issues and Research
Directions”, IEEE Transaction on Software Engineering, Vol. 21,
Issue 6, pp: 528-561, 1995.

[28] Sindre, G., Conradi, R., Karlsson, E. A., “The REBOOT Approach
to Software Reuse”, Journal of Systems and Software, Vol. 30, Is-
sue 3, pp: 201-212, 1995.

[29] Arun Sharma, “Design and Analysis of Metrics for Component-
Based Software Systems”, Ph.D. Thesis, 2009.

[30] Sonu Mittal and Pradeep Kumar Bhatia, “Framework for Evaluat-
ing and Ranking the Reusability of COTS Components based upon
Analytical Hierarchy Process”, International Journal of Innovations
in Engineering and Technology (IJIET), Vol. 2 Issue 4, ISSN:
2319- 1058, pp: 352-360, August 2013.

[31] Kreitzberg, Charles B. and Ben Shneiderman, “FORTRAN Pro-
gramming: A Spiral Approach”, Harcourt Brace Jovanovich, Inc.,
1982.

IJSER

http://www.ijser.org/

	1 Introduction
	2 Component Based Software Engineering
	3 Software Component Metric
	4 Empirical Evaluation Of Some Software Component Metrics
	Table 4.0: Weight values for Interface Methods
	Table 4.1: Values of customizability of various JavaBeans components
	Table 4.2: Values of Portability of various JavaBeans components
	Table 4.3.1: Interface Complexity Metric values using equation (4.3.1)
	Table 4.3.2: Interface Complexity Metric values using equation (4.3.2)
	Table 4.4: Values of Readability of various JavaBeans components
	Table 4.5: Values of Integrity of various JavaBeans components
	5 CONCLUSION AND FUTURE WORK
	References

